Прошлое и настоящее
Прошлое и настоящее
Таким образом, возникает задача выяснения прошедших состояний космических объектов, последовательных этапов их развития. Задача чрезвычайно сложная, если учесть, что речь идет о громадных промежутках времени в миллионы и миллиарды лет и о таких состояниях, которые в нашу эпоху могли претерпеть кардинальные изменения.
Однако история естествознания показывает, что если перед наукой возникают те или иные задачи, то находятся и пути их решения. В частности, современная астрофизика располагает — вполне реальными возможностями проникновения в прошлое.
Вообще говоря, для того чтобы раскрыть закономерности развития какого-либо интересующего нас объекта, необходимо изучать его в движении, где движение понимается в широком смысле как любое изменение.
Существует старинная легенда о короле, который однажды задал своим мудрецам нелегкую задачу. Пригласив их во дворец, он указал им на большой каменный шар, лежавший посреди двора и попросил определить, что находится внутри его. Один за другим пытались мудрены разрешить трудную задачу. Сутками напролет просиживали они наедине с шаром, пристально вглядываясь в его и стараясь силой мысли проникнуть внутрь камня. И один за другим удалялись, понурив голову, так и не справившись с заданием. Так продолжалось до тех пор, пока среди мудрецов не нашелся действительно мудрый человек. Он приказал разложить под загадочным шаром костер и нагревал его до тех пор, пока раскаленный камень пе треснул и шар не распался на две половинки. И тогда все увидели, что внутри шара нет ничего, кроме камня…
Если бы объект исследования был неподвижен, если бы с ним ничего не происходило, если бы в нем не было никаких изменений, то о нем нельзя было бы узнать что-либо достоверное. Подлинно научное доследование основано на изучении реальных изменений, происходящих в природе.
Конечно, и для «неподвижного» объекта можно сочинить предысторию. Но именно сочинить, потому что реалистичность подобных гипотез выявится лишь в том случае, если нам удастся проверить, в какой степени они предсказывают и объясняют происходящие изменения.
Представьте, что перед вами готовое, оштукатуренное, новенькое здание. И вы смотрите на него со стороны и совершенно ничего не знаете о том, из чего и каким способом оно сооружено. При такой ситуации можно строить любые гипотезы:: скажем, что оно сложено из кирпича, или кусков гранита, или панелей, или блоков, И любая из этих гипотез будет представляться одинаково правдоподобной.
Совсем иная ситуация возникла бы в том случае, если бы мы застали период, когда здание еще воздвигалось. Наблюдая за стройкой, мы. не только смогли бы разрабатывать вполне реалистические гипотезы, но и проверять их обоснованность дальнейшими наблюдениями.
К сожалению, астрономам приходится, как правило, иметь дело е почти «неподвижными» объектами. Таковы, например, большинство звезд и галактик, которые развиваются настолько медленно, что для человечества с его сравнительно короткой (с точки зрения космических масштабов) шкалой жизни они практически остаются неизменными. Даже целое столетие в истории подобного объекта все равно что секунда в нашей обыденной жизни. Наблюдая за подобными объектами много десятилетий подряд, мы все равно получаем как бы одну и ту же «моментальную» фотографию. Есть ли выход из этого действительно затруднительного положения?
Обратимся к нашему примеру с выстроенным домом.
Можно ли все-таки выяснить, как его сооружали? Для этого следует совершить «экскурсию» по городу и отыскать другие точно такие же дома, но на разных стадиях строительства. И если даже наша экскурсия будет совершена в воскресный день, когда все «неподвижно», мысленно расположив обнаруженные дома один за другим по «стадиям завершенности», мы получим «возрастной ряд», который поможет нам представить все последовательные этапы возведения дома.
Примерно так же поступают и ученые в своих трудных поисках прошлого звезд и галактик. Мир этих космических объектов чрезвычайно разнообразен. И это разнообразие объясняется не только существованием многих типов подобных космических объектов, но и тем, что различные звезды и галактики могут находиться в данный момент на разных этапах своей эволюции.
Чтобы судить о путях развития небесных тел, надо разделить их на классы однотипных объектов и внутри каждого такого класса составить «возрастной ряд». Подобный ряд вполне может заменить ряд следующих друг — за другом во времени состояний одного и того же интересующего нас объекта.
Подобный метод, который можно назвать «методом сравнения», находит применение не только в астрономии, но и во многих других областях современного естествознания.
Однако нередко бывает и так, что интересующий нас объект известен нам в единственном экземпляре. Таковы, например, наша планетная система или Метагалактика. Сравнить их не с чем. Но и в этом случае возможности для выяснения их предыстории есть. Еще В. И. Ленин отмечал, что в фундаменте самого здания материи можно «предполагать существование способности, сходной с ощущением», [Ленин В. И. Материализм и эмпириокритицизм. собр. соч., т. 18, с. 40] что вся материя обладает свойством, по существу родственным с ощущением, свойством отражения.
В наше время это свойство материи — хранить следы прежних состояний нашло практическое применение.
Достаточно напомнить хотя бы о «памяти» электронно-вычислительных машин и кибернетических устройств.
Итак, любая материя может обладать «памятью».
С этой точки зрения все закономерности окружающего вас мира можно разделить на две большие группы — закономерности, которые определяются основными, фундаментальными законами природы, и закономерности, которые постепенно складываются в процессе развития той или иной конкретной материальной системы.
Очевидно, закономерности первого типа не зависят от истории — они всегда одинаковы, а их проявления определяются конкретными условиями. Скажем, законы Кеплера действуют в Солнечной системе вне зависимости от путей се формирования. Следовательно, такие закономерности сами по себе ничего не могут сообщить нам об истории данной системы.
Что касается закономерностей второго типа, то они непосредственно зависят от хода эволюции и потому способны многое рассказать о прошлом. Иными словами, современное состояние многих материальных систем довольно часто содержит определенные сведения об их предыстории.
Но если материя способна хранить «следы» былого, то это значит: главный «ключ» к познанию прошлого космических объектов состоит прежде всего в глубоком изучении их современных состояний.
Тут невольно напрашивается сравнение с работой детектива. Вот он прибывает на место преступления. Оно совершилось, преступник исчез. Теперь необходимо восстановить то, что произошло несколько часов назад: без этого злоумышленник пе будет пойман. Живых свидетелей нет. И казалось бы, задача безнадежна. Однако есть другие свидетели — предметы, вещи. Они, хотя и мертвы, но отнюдь не безмолвны. В результате преступления в состоянии окружающей среды что-то изменилось: как бы ни изощрялся преступник, он почти неизбежно оставит какие-то следы. И по этим иногда едва различимым, казалось бы, ничего не говорящим следам опытный детектив сможет восстановить картину случившегося.
Сходные задачи приходится решать и ученому, интересующемуся былым состоянием тех или иных объектов. Кстати, мы уже воспользовались подобным способом, когда по картине современного движения галактик пытались восстановить прошлое Вселенной.
Рассмотрим в качестве примера проблему происхождения Солнечной системы. Наука располагает фактическими данными лишь о ее современном состоянии. Выход, очевидно, состоит в том, чтобы искать отражение минувшего в той картине планетной семьи Солнца, которая существует сегодня. Такой подход ограничивает диапазон возможных гипотез — ведь далеко не всякий путь развития мог привести Солнечную систему к ее современному виду…
Каковы те закономерности в строении Солнечной системы, которые можно было бы отнести ко второму типу, т. е. закономерности, зависящие от предыстории?
Это прежде всего закономерности планетных движений. Все планеты обращаются вокруг Солнца в одном направлении и почти в одной плоскости, а их орбиты мало отличаются от окружностей. Между тем согласно законам механики обращение небесных тел под действием сил тяготения вокруг массивного центрального ядра должно происходить по различным направлениям, в разных плоскостях и по вытянутым, эллиптическим орбитам. Движение по окружностям в одном направлении да еще в одной плоскости — редчайший частный случай, и вероятность того, что он осуществится, например, при случайном объединении не связанных друг с другом небесных тел, практически равна нулю.
Это обстоятельство указывает на то, что семья Солнца сформировалась в каком-то едином процессе, в ходе которого и сложились наблюдаемые особенности планетных движений.
Об этом же говорит и разделение планет Солнечной системы на две группы, отличающиеся по своим свойствам. Одну из них составляют четыре ближайшие к Солнцу планеты — Меркурий, Венера, Земля и Марс.
Они сравнительно невелики по размерам и состоят преимущественно из тяжелых химических элементов. Во вторую группу входят Юпитер, Сатурн, Уран и Нептун, Это планеты-гиганты, состоящие в основном из водорода и его соединений и гелия.
Таким образом, всерьез можно, рассматривать лишь те космогонические гипотезы, которые не только описывают, как вещество из допланетного состояния сформировалось в планеты, но и показывают, как в этом процессе сложились современные закономерности Солнечной системы.
В тех случаях, когда речь идет об изучении Вселенной, ученые располагают еще одной возможностью — возможностью непосредственного наблюдения предшествующих стадий развития космических объектов.
В обычной жизни мы видим все происходящее в тот самый момент, когда оно совершается в действительности. И даже тогда, когда, находясь в Москве, мы смотрим телевизионную передачу из далекого Владивостока, которая транслируется через искусственный спутник Земли, события в дальневосточной студии и на экране происходят фактически одновременно. Это и понятно, если вспомнить, что электромагнитные волны распространяются с колоссальной скоростью-около 300000 км/с. Такая скорость позволяет им мгновенно преодолевать любые земные расстояния.
Иное дело — расстояния космические. Уже от Лупы — ближайшего небесного тела — свет идет к нам больше секунды, а от Солнца — восемь минут восемнадцать секунд. Для того чтобы пробежать расстояние от Солнца до самой далекой планеты Солнечной системы Плутона, световая волна затрачивает пять с половиной часов, а ближайшей звезды Проксимы Центавра она достигнет только через четыре года и четыре месяца.
Следовательно, Луну мы видим такой, какой она была секунду назад, Солнце — с опозданием на 8 минут 18 секунд, а Проксиму Центавра — на 4 года и 4 месяца.
Таким образом, наблюдая небо, мы непосредственно заглядываем в прошлое Вселенной. И чем дальше находится тот или иной объект, тем в более отдаленные времена мы проникаем.
Если бы, скажем, хорошо знакомая всем Полярная звезда сегодня вообще перестала существовать, то мы, находясь на Земле, продолжали бы видеть эту фактически уже не существующую звезду еще на протяжении 500 лет — как раз тот срок, который необходим световым лучам, чтобы преодолеть огромное расстояние, отделяющее Полярную звезду от Земли.
Таким образом, каждая звезда, каждая галактика, которую мы видим, одна из живых страниц истории Вселенной.
Современные средства астрономических исследовании позволяют наблюдать объекты, расположенные на расстояниях вплоть до 10–12 миллиардов световых лиг.
Это означает, что соответствующие этим расстояниям объекты мы наблюдаем такими, какими они были 10–12 миллиардов лет тому назад.
Более того, в принципе есть возможность получать непосредственную информацию и о самых ранних этапах существования Вселенной. Из теории расширяющейся Вселенной следует, что через несколько сотен тысяч лег после начала расширения плотность среды снизилась настолько, что электромагнитное излучение получило возможность свободно распространяться в пространстве.
Это «ископаемое», реликтовое излучение дожило до нашей эпохи и в настоящее время надежно регистрируется радиотелескопами. Изучение его свойств, в частности, показало, что начальное вещество обладало весьма высокой температурой, — это была горячая плазма.
Реликтовое излучение несет нам прямую информацию о периоде, отстоявшем от начала расширения на несколько сотен тысяч лет.
Современные фундаментальные физические теории дают нам полные достоверные данные, вплоть до еще более раннего момента, когда расширяющийся сгусток обладал ядерной плотностью. Этот момент отстоял от начала расширения не более чем на одну секунду.
Таким образом, мы уже сейчас располагаем достаточно надежными, сведениями об отрезке времени, продолжительность которого составляет 99,99 всей истории Метагалактики…
Разумеется, всякая экстраполяция, т. е. распространение наших знаний в прошлое или будущее Вселенной, неизбежно влечет за собой известную долю неопределенности. И чем дальше мы углубляемся в прошлое или будущее, тем эта неопределенность больше. Хотя по мере развития науки она неуклонно уменьшается.
Есть принципиальная возможность получить непосредственную информацию и о самых первых мгновениях расширения Вселенной.
Реликтовые нейтрино могут принести нам сведения вплоть до момента, отстоявшего от начала расширения всего на 0,3 секунды. На еще более ранней стадии плотность вещества была настолько велика, что оно было непроницаемым даже для нейтрино.
Об этой стадии, возможно, могли бы рассказать так называемые гравитационные волны.
Пока что реликтовые нейтрино и гравитационные волны мы регистрировать не умеем. Но суть дела от этого не меняется. Со временем способы регистрации этих излучений будут разработаны, и у исследователей Вселенной появится возможность получать информацию о начальном этапе ее существования.